PaddleDetection (object detection)
PaddleDetection is an Object Detection toolkit based on PaddlePaddle. It supports object detection, instance segmentation, multiple object tracking and real-time multi-person keypoint detection. Custom docker images with additional tools are available from here:
https://github.com/waikato-datamining/paddledetection
Prerequisites#
Make sure you have the directory structure created as outlined in the Prerequisites.
Data#
In this example, we will use the American Sign Language Letters dataset, which consists of sets of images of hands, one per letter in the English alphabet (26 labels).
Download the dataset from the following URL into the data directory and extract it:
Once extracted, rename the voc directory to sign-voc.
Now we have to convert the format from VOC XML into MS COCO. We can do this by using the image-dataset-converter library. At the same time, we can split the dataset into train, validation and test subsets.
From within the applied_deep_learning
directory, run the following command:
docker run --rm -u $(id -u):$(id -g) \
-v `pwd`:/workspace \
-t waikatodatamining/image-dataset-converter:0.0.4 \
idc-convert \
-l INFO \
from-voc-od \
-i "/workspace/data/sign-voc/*.xml" \
to-coco-od \
-o /workspace/data/sign-coco-split/ \
--category_output_file labels.txt \
--split_names train val test \
--split_ratios 70 15 15
Training#
For training, we will use the following docker image:
waikatodatamining/paddledetection:2.8.0_cuda11.8
Inference is possible without a GPU as well (though much, much slower). For utilizing a CPU you can use the following docker image:
waikatodatamining/paddledetection:2.8.0_cpu
The training script is called paddledet_train
, for which we can invoke the help screen as follows:
docker run --rm \
-t waikatodatamining/paddledetection:2.8.0_cuda11.8 \
paddledet_train --help
It is good practice creating a separate sub-directory for each training run, with a directory name that hints at
what dataset and model were used. So for our first training run, which will use mainly default parameters, we will
create the following directory in the output
folder:
sign-paddle-yolov3
Before we can train, we will need to obtain and customize a config file. Within the container, you can find example configurations for various architectures in the following directory:
/opt/PaddleDetection/configs
Using the paddledet_export_config
command, we can expand and dump one of these configurations for our
own purposes:
docker run --rm \
-u $(id -u):$(id -g) \
--gpus=all \
-v `pwd`:/workspace \
-v `pwd`/cache/visualdl:/.visualdl \
-v `pwd`/cache:/.cache \
-v `pwd`/cache:/opt/PaddleDetection/~/.cache \
-t waikatodatamining/paddledetection:2.8.0_cuda11.8 \
paddledet_export_config \
-i /opt/PaddleDetection/configs/yolov3/yolov3_mobilenet_v1_270e_coco.yml \
-o /workspace/output/sign-paddle-yolov3/yolov3_mobilenet_v1_270e_coco.yml \
-O /workspace/output/sign-paddle-yolov3 \
-t /workspace/data/sign-coco-split/train/annotations.json \
-v /workspace/data/sign-coco-split/val/annotations.json \
--save_interval 10 \
--num_epochs 50 \
--num_classes 26
Kick off the training with the following command:
docker run --rm \
-u $(id -u):$(id -g) \
--shm-size 8G \
--gpus=all \
-v `pwd`:/workspace \
-v `pwd`/cache/visualdl:/.visualdl \
-v `pwd`/cache:/.cache \
-v `pwd`/cache:/opt/PaddleDetection/~/.cache \
-t waikatodatamining/paddledetection:2.8.0_cuda11.8 \
paddledet_train \
-c /workspace/output/sign-paddle-yolov3/yolov3_mobilenet_v1_270e_coco.yml \
--eval \
-o use_gpu=true
Export the model using the paddledet_export_model
script:
docker run --rm \
-u $(id -u):$(id -g) \
--shm-size 8G \
--gpus=all \
-v `pwd`:/workspace \
-v `pwd`/cache/visualdl:/.visualdl \
-v `pwd`/cache:/.cache \
-v `pwd`/cache:/opt/PaddleDetection/~/.cache \
-t waikatodatamining/paddledetection:2.8.0_cuda11.8 \
paddledet_export_model \
-c /workspace/output/sign-paddle-yolov3/yolov3_mobilenet_v1_270e_coco.yml \
--output_dir /workspace/output/sign-paddle-yolov3/inference
Predicting#
Using the paddledet_predict
script, we can batch-process images placed in the predictions/in
directory
as follows (e.g., from our test subset):
docker run --rm \
-u $(id -u):$(id -g) \
--shm-size 8G \
--gpus=all \
-v `pwd`:/workspace \
-v `pwd`/cache/visualdl:/.visualdl \
-v `pwd`/cache:/.cache \
-v `pwd`/cache:/opt/PaddleDetection/~/.cache \
-t waikatodatamining/paddledetection:2.8.0_cuda11.8 \
paddledet_predict_poll \
--model_path /workspace/output/sign-paddle-yolov3/inference/yolov3_mobilenet_v1_270e_coco \
--device gpu \
--label_list /workspace/data/sign-coco-split/train/labels.txt \
--prediction_in /workspace/predictions/in \
--prediction_out /workspace/predictions/out
Notes
-
The predictions get output in OPEX JSON format, which you can view the predictions with the ADAMS Preview browser:
Example prediction